AugeLab Studio Manual
English
English
  • 👋Welcome to AugeLab Studio User Manual
  • 📘Introduction
    • AugeLab Studio
    • Key Features
    • Use Cases
    • System Requirements
  • 🚀Getting Started
    • Signing up
    • Installation
    • First Look
    • Simple Tour
    • Your Very First Project
      • Basics
      • Detection
      • Wrapping Up
    • More Local Examples
    • Further Reading
  • đŸ–Ĩī¸AugeLab Studio Interface
    • Detailed Look
    • Scenario Area
    • Menu and Toolbar
    • Managing Projects
    • Installing AI and much more
      • Leverage AI with Module Downloader
  • 🧱Function Blocks
    • Block Structures
    • Sockets
    • Blocks Column
    • Connections
    • All Function Blocks
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Devices and Communication
    • Camera Usage
    • Communication Protocols
    • Further Reading
  • 🧩Example Projects
    • Demo Projects
    • Circumference Measurement
    • Object Counting
    • Tile Width Measurement
    • Human Detection
    • Object Detection
  • 🔑Key Features
    • Deploy Custom HMI Applications
    • Annotate Data for Object Detection
    • Train Custom AI Models
      • Choosing the Right Database
      • When to Stop Training
    • Create Plugins
      • Components
      • Coding Reference
    • Share Your Solutions with Community
    • Instal Python Packages
  • 📑FAQ
    • Contact Us
    • FAQ
    • Setting up a full project
  • Additional Resources
    • Training Schedule
    • Training Materials
    • AugeLab Experts
  • Appendix
    • Dictionary
    • References
Powered by GitBook
On this page
  • đŸ“Ĩ Inputs
  • 📤 Outputs
  • đŸ•šī¸ Controls
  • 🎨 Features
  • 📝 Usage Instructions
  • 📊 Evaluation
  • 💡 Tips and Tricks
  • đŸ› ī¸ Troubleshooting

Was this helpful?

  1. Function Blocks
  2. All Function Blocks
  3. CNN Blocks

Training Parameters

This function block allows users to specify parameters for training an artificial intelligence (AI) model, particularly in the context of a convolutional neural network (CNN). Users can define the batch size and the number of epochs for the training process.

đŸ“Ĩ Inputs

This block does not require any inputs.

📤 Outputs

Training Parameters Returns a dictionary containing the specified batch size and epochs for training the AI model.

đŸ•šī¸ Controls

Batch Size A text field where users can specify the number of training samples to be processed before the model's internal parameters are updated. The default value is set to 32.

Epochs A text field where users can specify the number of complete passes through the training dataset. The default value is set to 150.

🎨 Features

Dynamic Parameter Setting Users can adjust the batch size and epochs directly from the interface, allowing for flexible model training configurations.

Validation Check Each input field validates its number type, ensuring correct data types are provided for training parameters.

📝 Usage Instructions

  1. Open the Block: Drag and drop the block into your flow.

  2. Set Parameters: Enter the desired values for Batch Size and Epochs. Adjust these values to fit your training needs.

  3. Run the Training: Use the output from this block in conjunction with your AI training setup.

📊 Evaluation

When executed, this function block will output the selected training parameters in a structured format ready to be utilized for AI model training.

💡 Tips and Tricks

Choosing Batch Size
  • A larger batch size may lead to faster training during each epoch, but can result in less generalization. If you have limited memory, you may want to use a smaller batch size.

Choosing Epochs
  • Start training with a baseline of 10-50 epochs and adjust based on training results. Monitoring for overfitting is essential; stop training if the validation accuracy no longer improves.

Using with Other Blocks
  • Combine this block with Node AI Training which will utilize the specified parameters to effectively initiate the training process of your AI model.

đŸ› ī¸ Troubleshooting

Invalid Input

If you receive an error stating that the input is invalid, ensure that the values entered in both Batch Size and Epochs are numeric and within a reasonable range for your model.

PreviousSoftmax LayerNextData/Logic

Last updated 8 months ago

Was this helpful?

🧱