AugeLab Studio Manual
English
English
  • 👋Welcome to AugeLab Studio User Manual
  • 📘Introduction
    • AugeLab Studio
    • Key Features
    • Use Cases
    • System Requirements
  • 🚀Getting Started
    • Signing up
    • Installation
    • First Look
    • Simple Tour
    • Your Very First Project
      • Basics
      • Detection
      • Wrapping Up
    • More Local Examples
    • Further Reading
  • đŸ–Ĩī¸AugeLab Studio Interface
    • Detailed Look
    • Scenario Area
    • Menu and Toolbar
    • Managing Projects
    • Installing AI and much more
      • Leverage AI with Module Downloader
  • 🧱Function Blocks
    • Block Structures
    • Sockets
    • Blocks Column
    • Connections
    • All Function Blocks
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Devices and Communication
    • Camera Usage
    • Communication Protocols
    • Further Reading
  • 🧩Example Projects
    • Demo Projects
    • Circumference Measurement
    • Object Counting
    • Tile Width Measurement
    • Human Detection
    • Object Detection
  • 🔑Key Features
    • Deploy Custom HMI Applications
    • Annotate Data for Object Detection
    • Train Custom AI Models
      • Choosing the Right Database
      • When to Stop Training
    • Create Plugins
      • Components
      • Coding Reference
    • Share Your Solutions with Community
    • Instal Python Packages
  • 📑FAQ
    • Contact Us
    • FAQ
    • Setting up a full project
  • Additional Resources
    • Training Schedule
    • Training Materials
    • AugeLab Experts
  • Appendix
    • Dictionary
    • References
Powered by GitBook
On this page
  • đŸ“Ĩ Inputs
  • 📤 Outputs
  • đŸ•šī¸ Controls
  • 🎨 Features
  • 📝 Usage Instructions
  • 📊 Evaluation
  • 💡 Tips and Tricks
  • đŸ› ī¸ Troubleshooting

Was this helpful?

  1. Function Blocks
  2. All Function Blocks
  3. CNN Blocks

Optimizer SGD

This function block provides an implementation of the Stochastic Gradient Descent (SGD) optimization algorithm, widely used in training machine learning models.

đŸ“Ĩ Inputs

This function block does not require any inputs.

📤 Outputs

The output of this block is the configured optimizer that can be used for model training.

đŸ•šī¸ Controls

Learning rate A text input that specifies the learning rate for the optimizer. This is a crucial hyperparameter that controls how much to change the model in response to the estimated error each time the model weights are updated.

Momentum A text input that specifies the momentum value. This is a technique that helps accelerate SGD in the relevant direction and dampens oscillations.

Centered A dropdown menu allowing you to choose whether to activate the centered version of the Nesterov Accelerated Gradient. This option can give improved convergence properties for certain problems.

🎨 Features

Customizable Hyperparameters Users can customize the learning rate, momentum, and whether to use Nesterov momentum.

Integration with Keras This block leverages Keras for optimization, enabling easy integration with Keras-based deep learning models.

📝 Usage Instructions

  1. Set Learning Rate: Input the desired learning rate in the Learning rate field. A common starting point is 0.001.

  2. Set Momentum: Input the momentum value in the Momentum field. If not needed, leave it as 0.

  3. Toggle Nesterov: Select whether you want to use the centered Nesterov momentum from the Centered dropdown.

  4. Evaluate: Execute the block to configure the SGD optimizer based on the provided parameters.

📊 Evaluation

When evaluated, this function block produces a configured SGD optimizer that can be utilized in the training phase of a machine learning model.

💡 Tips and Tricks

Choosing a Learning Rate

If unsure about the learning rate, start with 0.001, then adjust based on the performance of the model during training.

Using Momentum

Using a momentum value of around 0.9 is common practice, as it can help smooth out the updates and improve convergence speed.

Experiment with Nesterov

If you notice oscillations during training, try enabling Nesterov momentum. This may enhance the convergence speed and stability of gradient descent.

đŸ› ī¸ Troubleshooting

Error with Learning Rate

Make sure that the learning rate input value is a valid float. If you encounter any error messages, check the format of your input.

Optimizer Configuration Issues

Double-check to ensure all fields are filled properly before evaluating the block. Unconfigured parameters may lead to errors during the optimization process.

PreviousOptimizer RMSPropNextReLU Layer

Last updated 8 months ago

Was this helpful?

🧱