AugeLab Studio Manual
English
English
  • πŸ‘‹Welcome to AugeLab Studio User Manual
  • πŸ“˜Introduction
    • AugeLab Studio
    • Key Features
    • Use Cases
    • System Requirements
  • πŸš€Getting Started
    • Signing up
    • Installation
    • First Look
    • Simple Tour
    • Your Very First Project
      • Basics
      • Detection
      • Wrapping Up
    • More Local Examples
    • Further Reading
  • πŸ–₯️AugeLab Studio Interface
    • Detailed Look
    • Scenario Area
    • Menu and Toolbar
    • Managing Projects
    • Installing AI and much more
      • Leverage AI with Module Downloader
  • 🧱Function Blocks
    • Block Structures
    • Sockets
    • Blocks Column
    • Connections
    • All Function Blocks
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • πŸ“‘Devices and Communication
    • Camera Usage
    • Communication Protocols
    • Further Reading
  • 🧩Example Projects
    • Demo Projects
    • Circumference Measurement
    • Object Counting
    • Tile Width Measurement
    • Human Detection
    • Object Detection
  • πŸ”‘Key Features
    • Deploy Custom HMI Applications
    • Annotate Data for Object Detection
    • Train Custom AI Models
      • Choosing the Right Database
      • When to Stop Training
    • Create Plugins
      • Components
      • Coding Reference
    • Share Your Solutions with Community
    • Instal Python Packages
  • πŸ“‘FAQ
    • Contact Us
    • FAQ
    • Setting up a full project
  • Additional Resources
    • Training Schedule
    • Training Materials
    • AugeLab Experts
  • Appendix
    • Dictionary
    • References
Powered by GitBook
On this page
  • πŸ“₯ Inputs
  • πŸ“€ Outputs
  • πŸ•ΉοΈ Controls
  • 🎨 Features
  • πŸ“ Usage Instructions
  • πŸ“Š Evaluation
  • πŸ’‘ Tips and Tricks
  • πŸ› οΈ Troubleshooting

Was this helpful?

  1. Function Blocks
  2. All Function Blocks
  3. AI Blocks

Pose Estimation

This function block is used for detecting specific body parts in an image and drawing a skeleton to visualize the estimated posture. It utilizes deep learning models to identify key points associated with human poses.

πŸ“₯ Inputs

Image Any The input image from which pose estimation will be performed.

Show Skeleton A Boolean input that allows you to toggle the visibility of the skeleton overlay on the image.

πŸ“€ Outputs

Image Any The output modified image displaying the detected pose and, if enabled, the skeleton.

Selected Body Part Positions This output provides a mapping of detected body parts and their positions in the image.

πŸ•ΉοΈ Controls

Confidence A slider that adjusts the confidence threshold for detecting body parts. Higher values require more certainty from the model to consider a point valid.

Class Names A table view that allows you to select which body parts should be detected and displayed in the output.

🎨 Features

Real-Time Detection This block uses a pre-trained deep learning model to detect body parts in real time and visualize results.

Customizable Detection Users can select specific body parts to monitor, making this tool flexible for various applications.

Skeleton Visualization The detected positions can be connected with lines to form a skeleton, helping in visual understanding of the pose.

πŸ“ Usage Instructions

  1. Input Image: Connect an image containing a person or human figure to the Image Any input.

  2. Show Skeleton Option: Optionally connect a boolean signal to the Show Skeleton input to enable/disable the skeleton overlay.

  3. Adjust Confidence: Use the Confidence slider to adjust the minimum confidence level required for detecting body parts.

  4. Select Body Parts: Check or uncheck body parts in the Class Names table to configure which body parts should be detected.

  5. Evaluate: Run the block to perform pose estimation. The output will be the modified image and detected body part positions.

πŸ“Š Evaluation

When run, this block will output an image displaying the detected body parts and a skeleton if enabled, along with a dictionary of body parts and their positions.

πŸ’‘ Tips and Tricks

Improving Detection Accuracy

Adjust the Confidence slider to find an optimal balance between detection sensitivity and false positives. A higher value may yield more accurate detections.

Selecting Specific Body Parts

Select only the necessary body part classes you need to analyze; this will simplify the output and focus on the relevant parts of the body.

Preprocessing Input Images

Consider preprocessing input images with contrast adjustment, resizing, or filtering before sending them to this block to enhance detection results.

πŸ› οΈ Troubleshooting

No Detections Found

If the block fails to detect any body parts, ensure the input image is clear and well-lit. Lowering the confidence threshold may also help in detecting more points.

Skeleton Not Showing

Make sure the Show Skeleton input is activated and check if any body parts are being detected. If no parts are detected, the skeleton won’t appear.

PreviousObject DetectionNextSafety Equipment Detection

Last updated 9 months ago

Was this helpful?

🧱