AugeLab Studio Manual
English
English
  • 👋Welcome to AugeLab Studio User Manual
  • 📘Introduction
    • AugeLab Studio
    • Key Features
    • Use Cases
    • System Requirements
  • 🚀Getting Started
    • Signing up
    • Installation
    • First Look
    • Simple Tour
    • Your Very First Project
      • Basics
      • Detection
      • Wrapping Up
    • More Local Examples
    • Further Reading
  • đŸ–Ĩī¸AugeLab Studio Interface
    • Detailed Look
    • Scenario Area
    • Menu and Toolbar
    • Managing Projects
    • Installing AI and much more
      • Leverage AI with Module Downloader
  • 🧱Function Blocks
    • Block Structures
    • Sockets
    • Blocks Column
    • Connections
    • All Function Blocks
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Devices and Communication
    • Camera Usage
    • Communication Protocols
    • Further Reading
  • 🧩Example Projects
    • Demo Projects
    • Circumference Measurement
    • Object Counting
    • Tile Width Measurement
    • Human Detection
    • Object Detection
  • 🔑Key Features
    • Deploy Custom HMI Applications
    • Annotate Data for Object Detection
    • Train Custom AI Models
      • Choosing the Right Database
      • When to Stop Training
    • Create Plugins
      • Components
      • Coding Reference
    • Share Your Solutions with Community
    • Instal Python Packages
  • 📑FAQ
    • Contact Us
    • FAQ
    • Setting up a full project
  • Additional Resources
    • Training Schedule
    • Training Materials
    • AugeLab Experts
  • Appendix
    • Dictionary
    • References
Powered by GitBook
On this page
  • đŸ“Ĩ Inputs
  • 📤 Outputs
  • đŸ•šī¸ Controls
  • 🎨 Features
  • 📝 Usage Instructions
  • 📊 Evaluation
  • đŸ› ī¸ Troubleshooting

Was this helpful?

  1. Function Blocks
  2. All Function Blocks
  3. CNN Blocks

Global Average Pooling 2D

This function block performs global average pooling on 2D inputs, commonly used in convolutional neural networks to reduce the spatial dimensions of the input features.

đŸ“Ĩ Inputs

This function block does not have explicit inputs defined, as it processes the incoming features directly from the previous block in the architecture.

📤 Outputs

This function block outputs the pooled feature maps after applying the global average pooling layer, effectively condensing the spatial dimensions of the feature maps.

đŸ•šī¸ Controls

This block does not include configurable controls as it operates seamlessly within the neural network structure.

🎨 Features

  • Dimensionality Reduction: Global average pooling reduces the spatial dimension of the input, which decreases the number of parameters and computation in the network.

  • Focus on Important Features: By averaging the values, it helps maintain the most significant features of the input for classification tasks.

  • Use in Convolutional Networks: It is primarily used towards the end of convolutional neural networks, leading to robust feature representations.

📝 Usage Instructions

  1. Integrate into the Model: This block should be placed in the model architecture where dimensionality reduction is required after several convolutional and activation layers.

  2. Execute the Model: Run the model with input data through the previous layers to see how the global average pooling layer processes the data.

📊 Evaluation

When passing the input through the Global Average Pooling 2D block, the spatial dimensions of the output will be significantly reduced, helping to highlight the most important features for subsequent processing or classification tasks.

đŸ› ī¸ Troubleshooting

No Output Produced

Ensure that there are preceding convolution layers to provide the necessary input features for the pooling operation. Check the connection in the model flow to confirm data is being processed correctly.

Unexpected Dimension Errors

If dimension errors occur, verify that the inputs to this block have the expected shape. The input should be four-dimensional (batch size, height, width, channels). Modify the preceding layers or reshape data if necessary.

PreviousFully ConnectedNextGlobal Max Pooling 2D

Last updated 8 months ago

Was this helpful?

🧱