AugeLab Studio Manual
English
English
  • 👋Welcome to AugeLab Studio User Manual
  • 📘Introduction
    • AugeLab Studio
    • Key Features
    • Use Cases
    • System Requirements
  • 🚀Getting Started
    • Signing up
    • Installation
    • First Look
    • Simple Tour
    • Your Very First Project
      • Basics
      • Detection
      • Wrapping Up
    • More Local Examples
    • Further Reading
  • đŸ–Ĩī¸AugeLab Studio Interface
    • Detailed Look
    • Scenario Area
    • Menu and Toolbar
    • Managing Projects
    • Installing AI and much more
      • Leverage AI with Module Downloader
  • 🧱Function Blocks
    • Block Structures
    • Sockets
    • Blocks Column
    • Connections
    • All Function Blocks
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Devices and Communication
    • Camera Usage
    • Communication Protocols
    • Further Reading
  • 🧩Example Projects
    • Demo Projects
    • Circumference Measurement
    • Object Counting
    • Tile Width Measurement
    • Human Detection
    • Object Detection
  • 🔑Key Features
    • Deploy Custom HMI Applications
    • Annotate Data for Object Detection
    • Train Custom AI Models
      • Choosing the Right Database
      • When to Stop Training
    • Create Plugins
      • Components
      • Coding Reference
    • Share Your Solutions with Community
    • Instal Python Packages
  • 📑FAQ
    • Contact Us
    • FAQ
    • Setting up a full project
  • Additional Resources
    • Training Schedule
    • Training Materials
    • AugeLab Experts
  • Appendix
    • Dictionary
    • References
Powered by GitBook
On this page
  • đŸ“Ĩ Inputs
  • 📤 Outputs
  • đŸ•šī¸ Controls
  • 🎨 Features
  • 📝 Usage Instructions
  • 📊 Evaluation
  • 💡 Tips and Tricks
  • đŸ› ī¸ Troubleshooting

Was this helpful?

  1. Function Blocks
  2. All Function Blocks
  3. CNN Blocks

Optimizer Nadam

This function block implements the Nadam optimizer, a popular optimization algorithm that combines the advantages of Adam and Nesterov accelerated gradients. It allows users to set various parameters associated with the optimizer.

đŸ“Ĩ Inputs

This function block does not require any inputs.

📤 Outputs

The output of this block is the Nadam optimizer instance, which can be used in training neural networks.

đŸ•šī¸ Controls

Learning Rate The rate at which the optimizer updates the model parameters. A typical default value is 0.001.

Beta 1 This parameter controls the exponential decay rate for the first moment estimates. The standard value is typically 0.9.

Beta 2 This parameter controls the exponential decay rate for the second-moment estimates. A common value is 0.999.

Epsilon A small constant added to improve numerical stability, usually set to 1e-07.

🎨 Features

Parameter Configuration Allows users to customize key parameters of the Nadam optimizer to suit their specific needs.

Real-time Updates Changes to the parameters can be made in real-time, allowing for immediate feedback in the optimization process.

📝 Usage Instructions

  1. Set Parameters: Fill in the desired values for Learning Rate, Beta 1, Beta 2, and Epsilon using the provided input fields.

  2. Evaluate: Run the block to create an instance of the Nadam optimizer based on the specified parameters.

📊 Evaluation

Upon evaluation, this block outputs the configured Nadam optimizer, which can be used in training a neural network.

💡 Tips and Tricks

Choosing Learning Rate

A good learning rate is crucial. If you encounter slow convergence, consider gradually increasing the learning rate. If convergence is oscillating, try lowering it.

Adjusting Beta Values

Experimenting with the beta_1 and beta_2 values can significantly impact optimizer performance. Typical values of 0.9 for beta_1 and 0.999 for beta_2 are recommended as starting points.

Using Epsilon

The default epsilon value of 1e-07 is often sufficient; however, adjusting it slightly can help in preventing division by zero errors in some edge cases.

đŸ› ī¸ Troubleshooting

Parameter Value Errors

Ensure that the parameters for Learning Rate, Beta 1, Beta 2, and Epsilon are within reasonable ranges (e.g., Learning Rate should typically be greater than 0 and less than 1).

If you experience errors, verify the data type of each parameter.

PreviousOptimizer FTRLNextOptimizer RMSProp

Last updated 9 months ago

Was this helpful?

🧱