🖥️
AugeLab Studio Manual
Deutch
Deutch
  • 👋Willkommen im AugeLab Studio Benutzerhandbuch
  • 📘Einführung
    • AugeLab Studio
    • Hauptmerkmale
    • Anwendungsfälle
    • Systemanforderungen
  • 🚀Erste Schritte
    • Anmeldung
    • Installation
    • Erster Blick
    • Einfacher Rundgang
    • Ihr allererstes Projekt
      • Grundlagen
      • Erkennung
      • Zusammenfassung
    • Weitere lokale Beispiele
    • Weitere Lektüre
  • 🖥️AugeLab Studio Oberfläche
    • Detaillierter Blick
    • Szenario-Bereich
    • Menü und Werkzeugleiste
    • Projekte verwalten
    • KI installieren und vieles mehr
      • KI mit Modul-Downloader nutzen
  • 🧱Funktionsblöcke
    • Blockstrukturen
    • Schnittstellen
    • Blockspalte
    • Verbindungen
    • Alle Funktionsblöcke
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Geräte und Kommunikation
    • Kamera-Nutzung
    • Kommunikationsprotokolle
    • Weitere Lektüre
  • 🧩Beispielprojekte
    • Demo-Projekte
    • Umfangmessung
    • Objektezählung
    • Fliesenbreitenmessung
    • Menschenkennung
    • Objekterkennung
  • 🔑Hauptmerkmale
    • Benutzerdefinierte HMI-Anwendungen bereitstellen
    • Daten für die Objekterkennung annotieren
    • Benutzerdefinierte KI-Modelle trainieren
      • Die richtige Datenbank auswählen
      • Wann man das Training stoppen sollte
    • Plugins erstellen
      • Komponenten
      • Codereferenz
    • Teilen Sie Ihre Lösungen mit der Community
    • Python-Pakete installieren
  • 📑FAQ
    • Kontaktieren Sie uns
    • FAQ
    • Ein vollständiges Projekt einrichten
  • Zusätzliche Ressourcen
    • Schulungsplan
    • Schulung Materialien
    • AugeLab-Experten
  • Anhang
    • Wörterbuch
    • Referenzen
Powered by GitBook
On this page
  • 📥 Eingänge
  • 📤 Ausgänge
  • 🕹️ Steuerungen
  • 🎨 Funktionen
  • 📝 Nutzungshinweise
  • 📊 Bewertung
  • 💡 Tipps und Tricks
  • 🛠️ Fehlersuche

Was this helpful?

  1. Funktionsblöcke
  2. Alle Funktionsblöcke
  3. CNN Blocks

Average Pooling 2D

Dieser Funktionsblock implementiert eine Average-Pooling-Operation, ein wichtiges Konzept in konvolutionalen neuronalen Netzen (CNNs). Er reduziert die räumlichen Dimensionen der Eingangsmerkmalskarte, während er wesentliche Merkmale durch Durchschnittsberechnung beibehält.

📥 Eingänge

Dieser Funktionsblock hat keine Eingänge.

📤 Ausgänge

Dieser Funktionsblock produziert keine Ausgänge.

🕹️ Steuerungen

Pooling Size Ein Dropdown-Menü zur Auswahl der Größe des Pooling-Fensters. Die Optionen umfassen:

  • 2x2

  • 3x3

  • 4x4

  • 5x5

  • 6x6

  • 7x7

  • 8x8

Stride Eine Dropdown-Auswahl, mit der Sie den Schrittwert für die Pooling-Schicht festlegen können. Die Optionen spiegeln die für die Pooling-Größe verfügbaren Optionen wider.

🎨 Funktionen

Flexible Pooling Options Benutzer können die Pooling-Größe und den Schrittwert wählen, was Flexibilität je nach Bild und Modellarchitektur bietet.

Integration with CNNs Dieser Block ist so konzipiert, dass er nahtlos innerhalb konvolutionaler neuronaler Netze arbeitet und eine einfache Integration von Pooling-Ebenen ermöglicht.

📝 Nutzungshinweise

  1. Set Pooling Size: Wählen Sie die gewünschte Pooling-Größe aus dem Dropdown-Menü Pooling Size.

  2. Select Stride: Wählen Sie die Schrittgröße aus dem Dropdown-Menü Stride.

  3. Integrate into CNN: Verwenden Sie diesen Block, um eine Average-Pooling-Schicht zu einem Modell eines konvolutionalen neuronalen Netzes hinzuzufügen.

📊 Bewertung

Dieser Funktionsblock generiert beim Ausführen eine Average-Pooling-Schicht basierend auf den Auswahlmöglichkeiten des Benutzers, bereit zur Integration in ein neuronales Netzwerkmodell für Berechnungen.

💡 Tipps und Tricks

Verbesserung der Merkmalsextraktion

Die Verwendung größerer Pooling-Größen kann helfen, die Komplexität des Modells zu reduzieren und die Verallgemeinerung zu verbessern. Experimentieren Sie mit verschiedenen Pooling-Größen in verschiedenen Phasen Ihres Modells.

Balance zwischen Größe und Detail

Wählen Sie eine kleinere Pooling-Größe, wenn Ihr Modell mehr Details aus den Eingangsmerkmalen benötigt. Zu groß könnte wesentliche Merkmale verlieren, die für Klassifizierungsaufgaben notwendig sind.

🛠️ Fehlersuche

Ungeeignete Konfiguration

Wenn Sie auf Fehler stoßen, stellen Sie sicher, dass die Auswahl der Pooling-Größe und des Schrittes für die Dimensionen Ihrer Merkmalskarte geeignet ist; sie dürfen die Eingabedimensionen nicht überschreiten.

PreviousCNN BlocksNextBatch Normalization

Last updated 7 months ago

Was this helpful?

🧱