🖥️
AugeLab Studio Manual
Deutch
Deutch
  • 👋Willkommen im AugeLab Studio Benutzerhandbuch
  • 📘Einführung
    • AugeLab Studio
    • Hauptmerkmale
    • Anwendungsfälle
    • Systemanforderungen
  • 🚀Erste Schritte
    • Anmeldung
    • Installation
    • Erster Blick
    • Einfacher Rundgang
    • Ihr allererstes Projekt
      • Grundlagen
      • Erkennung
      • Zusammenfassung
    • Weitere lokale Beispiele
    • Weitere Lektüre
  • 🖥️AugeLab Studio Oberfläche
    • Detaillierter Blick
    • Szenario-Bereich
    • Menü und Werkzeugleiste
    • Projekte verwalten
    • KI installieren und vieles mehr
      • KI mit Modul-Downloader nutzen
  • 🧱Funktionsblöcke
    • Blockstrukturen
    • Schnittstellen
    • Blockspalte
    • Verbindungen
    • Alle Funktionsblöcke
      • AI Blocks
        • Face Detection
        • Mask Detection
        • Object Detection - Custom
        • Object Detection
        • Pose Estimation
        • Safety Equipment Detection
        • Social Distance Detector
        • Super Resolution
        • Text Detection
        • OCR
      • CNN Blocks
        • Average Pooling 2D
        • Batch Normalization
        • Choose Folder 2D
        • Compile Model
        • Conv. Sep. Layer 2D
        • Conv. Trans. Layer 2D
        • Convolutional Layer 2D
        • Dropout Layer
        • Flatten Layer 2D
        • Fully Connected
        • Global Average Pooling 2D
        • Global Max Pooling 2D
        • Input Layer 2D
        • Loss CCE
        • Max Pooling 2D
        • Metrics Accuracy
        • Model EfficientNet
        • Model MobileNet
        • Model ResNet
        • Model VGG
        • Optimizer Adadelta
        • Optimizer Adagrad
        • Optimizer Adam
        • Optimizer Adamax
        • Optimizer FTRL
        • Optimizer Nadam
        • Optimizer RMSProp
        • Optimizer SGD
        • ReLU Layer
        • Softmax Layer
        • Training Parameters
      • Data/Logic
        • Flow Control
          • Batch Concatenation
          • Batch Processing
          • Debatch
          • Get Batch Size
          • HMI Background
          • Subsystem Enabled
          • Subsystem In
          • Subsystem Loop
          • Subsystem Out
          • Subsystem
        • logic
          • All True
          • And
          • Demux
          • Equals
          • Greater
          • Logic Operations
          • Mux
          • Not
          • Or
          • Set - Reset
          • Smaller
        • Mathmetical Operations
          • Add
          • Counter
          • Divide
          • Math Operations
          • Maximum
          • Minimum
          • Multiply
          • Not Equals
          • Round
          • Square Root
          • Subtract
          • Trigonometry
        • Data Operations
          • Data Memory
          • Data to JSON
          • Data Type Converter
          • Datetime Compare
          • Dictionary Operations
          • Exclude Nones
          • Find Substring
          • Get Element
          • Is None
          • List Operations
          • Parse Data Dictionary
          • Replace None
          • String Merge
          • String Operations
        • Referencing
          • Data Read Global
          • Data Read Local
          • Data Write Global
          • Data Write Local
          • Debug Input
          • Tag From
          • Tag To
        • Signal Operators
          • Delay Step
          • Edge Falling
          • Edge Rising
          • Multi Port Switch
          • OFF Delay
          • ON Delay
      • Image/Transformations
        • Analysis
          • Color Density Percentage
          • Get Dimension
          • Histogram On Curve
          • Histogram On Line
          • Image Color Match
          • Image Memory
          • Image Resolution and Channel Value
          • Maximum Images
          • Mean Value of Image
          • Measure Position Distance
          • Minimum Images
          • Non-zero of Image
          • Std. of Image
          • Structural Similarity
        • Transformation Filters
          • Auto Alignment
          • Auto Contrast
          • Color Quantizer and Clustering
          • Color Space
          • Contrast-Brightness-Gamma
          • Contrast Optimization
          • Deconvolution
          • Denoising
          • Distance Transformation
          • FloodFill
          • Grab Cut Algorithm
        • Color Filters
          • 2D Filter
          • Apply Mask
          • Bilateral Filter
          • Blur
          • Edge Filter
          • HSV Filter
          • Image Adaptive Threshold
          • Image Threshold
          • Invert Image
          • Morphological Transformations
          • Normalize Image
          • RGB Mask
          • RGB Set
          • Sobel Filter
        • Operations
          • Add Images Weighted
          • Add Images
          • Collage Images
          • Divide Images
          • Flip Image
          • Image AutoRotator
          • Image Concatenate
          • Image Resize
          • Image Resizer
          • Merge Channels
          • Multiply Images
          • Polar Transform
          • Rotate Image Angle
          • Slice Image
          • Split Image
          • Subtract Images
      • Detections/Shapes
        • Detectors
          • Barcode Reader
          • Blob Detector
          • Blur Detector
          • Circle Detector
          • Corner Detector
          • Custom CNN Model
          • Data Matrix Reader
          • Detect Reference
          • Feature Detector
          • Find Object - Multiple Image
          • Find Object
          • Find Reference
          • Harris Corner Filter
          • Line Detector
          • Match Shapes
          • Measure Object Distance
          • Shape Detector
        • Draw
          • Draw Detections
          • Draw Line
          • Draw Point
          • Draw Rectangle
          • Draw Result On Image
          • Write Date On Image
          • Write Text On Image
        • Roi Processing
          • Check Area (Polygon)
          • Check Area
          • Get Pixel Mouse
          • Get Pixel
          • Get ROI
          • Image ROI Center
          • Image ROI Polygon
          • Image ROI Select Multi
          • Image ROI Select
          • Image ROI
          • Perspective Transform
          • Rectangles in Rectangle
        • Shape Analysis
          • Approximate Contour
          • Choose Line
          • Contour to Image
          • Fill Contour
          • Find Contour
          • Hull Convex
          • Minimum Circle
          • Minimum Ellipse
          • Minimum Rectangle
          • Minimum Rotated Rectangle
          • Most Similar Shape
          • Point Polygon Test
      • Input/Output
        • Communication
          • Modbus Connect
          • Modbus Read
          • Modbus Write
          • MQTT Publish
          • MQTT Subscribe
          • OPC UA Client
          • OPC UA Read
          • OPC UA Write
          • REST API - Get
          • REST API - Post
          • Send Mail
          • Siemens S7 Connect
          • Siemens S7 Read
          • Siemens S7 Write
        • Data Inputs
          • Date-Time List
          • Date-Time
          • Headless Check
          • Keyboard/Barcode Reader
          • Logic Input
          • Number Input
          • Number Range
          • PWM (Pulse Width Modulation)
          • Rising Edge
          • String Input
          • Text
        • Image Inputs
          • Camera IP (ONVIF)
          • Camera IP
          • Camera USB External
          • Camera USB Vidgear
          • Camera USB
          • Load Image From Path
          • Load Image
          • Make Image
          • Pixel
          • Video
        • Outputs/Exports
          • CSV Export
          • Cycle Timer
          • File/Folder Operations
          • GPU Statistics
          • Image Logger
          • Image Write
          • Led Output
          • Multi Image Write
          • Output
          • Scope
          • Show Image
          • Stop
  • 📡Geräte und Kommunikation
    • Kamera-Nutzung
    • Kommunikationsprotokolle
    • Weitere Lektüre
  • 🧩Beispielprojekte
    • Demo-Projekte
    • Umfangmessung
    • Objektezählung
    • Fliesenbreitenmessung
    • Menschenkennung
    • Objekterkennung
  • 🔑Hauptmerkmale
    • Benutzerdefinierte HMI-Anwendungen bereitstellen
    • Daten für die Objekterkennung annotieren
    • Benutzerdefinierte KI-Modelle trainieren
      • Die richtige Datenbank auswählen
      • Wann man das Training stoppen sollte
    • Plugins erstellen
      • Komponenten
      • Codereferenz
    • Teilen Sie Ihre Lösungen mit der Community
    • Python-Pakete installieren
  • 📑FAQ
    • Kontaktieren Sie uns
    • FAQ
    • Ein vollständiges Projekt einrichten
  • Zusätzliche Ressourcen
    • Schulungsplan
    • Schulung Materialien
    • AugeLab-Experten
  • Anhang
    • Wörterbuch
    • Referenzen
Powered by GitBook
On this page
  • 📥 Eingänge
  • 📤 Ausgänge
  • 🕹️ Steuerungen
  • 🎨 Funktionen
  • 📝 Nutzungshinweise
  • 📊 Bewertung
  • 💡 Tipps und Tricks
  • 🛠️ Fehlersuche

Was this helpful?

  1. Funktionsblöcke
  2. Alle Funktionsblöcke
  3. CNN Blocks

Optimizer SGD

Dieser Funktionsblock bietet eine Implementierung des Stochastic Gradient Descent (SGD) Optimierungsalgorithmus, der häufig beim Training von Machine Learning-Modellen verwendet wird.

📥 Eingänge

Dieser Funktionsblock benötigt keine Eingaben.

📤 Ausgänge

Die Ausgabe dieses Blocks ist der konfigurierte Optimierer, der für das Modelltraining verwendet werden kann.

🕹️ Steuerungen

Learning rate Ein Texteingabefeld, das die Lernrate für den Optimierer angibt. Dies ist ein entscheidender Hyperparameter, der steuert, wie stark das Modell als Reaktion auf den geschätzten Fehler bei jeder Aktualisierung der Modellgewichte verändert wird.

Momentum Ein Texteingabefeld, das den Momentumwert angibt. Dies ist eine Technik, die hilft, SGD in die relevante Richtung zu beschleunigen und Schwankungen zu dämpfen.

Centered Ein Dropdown-Menü, das es Ihnen ermöglicht auszuwählen, ob die zentrierte Version des Nesterov Accelerated Gradient aktiviert werden soll. Diese Option kann verbesserte Konvergenzeigenschaften für bestimmte Probleme bieten.

🎨 Funktionen

Customizable Hyperparameters Benutzer können die Lernrate, den Momentum und die Verwendung des Nesterov-Moments anpassen.

Integration with Keras Dieser Block nutzt Keras für die Optimierung, was eine einfache Integration mit Keras-basierten Deep-Learning-Modellen ermöglicht.

📝 Nutzungshinweise

  1. Set Learning Rate: Geben Sie die gewünschte Lernrate im Feld Learning rate ein. Ein häufiger Ausgangspunkt ist 0.001.

  2. Set Momentum: Geben Sie den Momentumwert im Feld Momentum ein. Wenn nicht benötigt, lassen Sie ihn bei 0.

  3. Toggle Nesterov: Wählen Sie aus, ob Sie das zentrierte Nesterov-Momentum im Dropdown-Menü Centered verwenden möchten.

  4. Evaluate: Führen Sie den Block aus, um den SGD-Optimierer basierend auf den bereitgestellten Parametern zu konfigurieren.

📊 Bewertung

Bei der Bewertung produziert dieser Funktionsblock einen konfigurierten SGD-Optimierer, der in der Trainingsphase eines Machine Learning-Modells verwendet werden kann.

💡 Tipps und Tricks

Choosing a Learning Rate

Wenn Sie sich über die Lernrate unsicher sind, beginnen Sie mit 0.001 und passen Sie diese basierend auf der Leistung des Modells während des Trainings an.

Using Momentum

Die Verwendung eines Momentumwerts von etwa 0.9 ist gängige Praxis, da es hilft, die Aktualisierungen zu glätten und die Konvergenzgeschwindigkeit zu verbessern.

Experiment with Nesterov

Wenn Sie während des Trainings Schwankungen bemerken, versuchen Sie, das Nesterov-Momentum zu aktivieren. Dies kann die Konvergenzgeschwindigkeit und Stabilität des Gradientenabstiegs verbessern.

🛠️ Fehlersuche

Error with Learning Rate

Stellen Sie sicher, dass der eingegebene Wert für die Lernrate ein gültiger Float ist. Wenn Sie Fehlermeldungen erhalten, überprüfen Sie das Format Ihrer Eingabe.

Optimizer Configuration Issues

Überprüfen Sie, ob alle Felder ordnungsgemäß ausgefüllt sind, bevor Sie den Block bewerten. Nicht konfigurierte Parameter können während des Optimierungsprozesses zu Fehlern führen.

PreviousOptimizer RMSPropNextReLU Layer

Last updated 7 months ago

Was this helpful?

🧱